Postagens populares
-
Desde a adolescência até a meia-idade ou um pouco mais somos capazes de nos reproduzir. O sexo tem um papel importante em nossa cultura; nós...
-
Da adolescência à menopausa, a menstruação faz parte da vida de toda mulher. É sinal de saúde na fase reprodutiva. Sua ocorrência é resultad...
-
Há algum tempo, a revista “Super Interessante” publicou uma matéria a respeito das piores dores do mundo. O método para medir a intensidade ...
-
Os tubarões são, talvez, as criaturas que mais aterrorizam as pessoas em todo o mundo. Sua temível aparência, tamanho grande e seu ambiente ...
-
De acordo com especialistas, cerca de 75% das mulheres terão pelo menos uma vez a infecção ao longo da vida. A doença é causada por um fungo...
-
As tempestades elétricas Numa tempestade elétrica, as nuvens de tempestade estão carregadas como capacitores gigantes no céu. A parte superi...
-
Segundo os médicos, ela não é tão preocupante quanto a bacteriana. Consiste numa inflamação da membrana chamada meninge, que reveste o siste...
-
O que a maioria das pessoas sabe sobre esteróides é que eles fazem os músculos crescerem e que eles fazem mal à saúde. Tanto que as ligas es...
-
Nós não somos os primeiros habitantes da Europa. Quase tudo o que nos ensinaram sobre a história antiga está (deliberadamente) errado. Ass...
-
Quem nunca sonhou em ser astronauta para um dia poder fazer uma viagem espacial? Até hoje, as imagens do homem chegando à Lua encantam inúme...
terça-feira, 29 de abril de 2014
DEFEITO EM CHIP FOTÔNICO ABREM CAMINHO PARA INTERNET QUÂNTICA
IMPERFEIÇÃO DESEJADA
Pesquisadores ao redor do mundo estão trabalhando para desenvolver chips ópticos, o que exige que a luz seja controlada por nanoestruturas do tamanho dos transistores atuais.
Essas nanoestruturas serão utilizadas para guiar os fótons, em vez de elétrons, substituindo a eletrônica pela fotônica.
Mas tem sido virtualmente impossível obter nanoestruturas fotônicas perfeitas - e as mínimas imperfeições mandam os fótons para onde eles não deveriam ir ou não reconhecem aqueles que deveriam ser recebidos.
Agora, pesquisadores alemães descobriram que nanoestruturas imperfeitas podem ser muito melhores, oferecendo funcionalidades inteiramente novas.
Eles descobriram que as nanoestruturas imperfeitas construídas pela tecnologia atual podem ser usadas para produzir nanolasers, a fonte de luz mais compacta e mais eficiente em termos de energia, o que a torna ideal para o interior de um chip fotônico.
INTERNET QUÂNTICA:
Quando um fóton atinge um buraco, ele é refletido e canalizado para um condutor de luz, um guia de ondas, uma espécie de "estrada para fótons", que é utilizada para orientar a luz dentro do cristal fotônico.
Devido às imperfeições dos buracos, a luz é jogada para trás e para frente no guia de ondas, intensificando-se e transformando-o em luz laser.
O resultado é um laser em escala nanométrica com enorme potencial de aplicações práticas, o que inclui processadores ultrarrápidos e com gasto mínimo de energia, além das tecnologias de criptografia e processamento quânticos.
"Nosso sonho final é construir uma 'internet quântica', onde as informações são codificadas em fótons individuais," explica Peter Lodahl, da Universidade de Copenhague.
Não tente fazer um guia de ondas perfeito - não vale a pena.
NANOLASER:
As estruturas atuais são fabricadas fazendo furos com um espaçamento de 380 nanômetros em uma pastilha semicondutora - normalmente arseneto de gálio (GaAs).
Os furos funcionam como espelhos que refletem a luz e, assim, podem ser utilizados para controlar a propagação da luz no chip óptico.
O problema é que, na prática, é impossível evitar pequenas irregularidades durante a fabricação desses assim chamados cristais fotônicos, o que pode ser um grande problema, uma vez que o resultado é a perda de luz e, portanto, de dados.
"Acontece que os chips ópticos imperfeitos são extremamente bem adequados para a captura de luz. Quando a luz é enviada ao longo do chip imperfeito, ela vai bater nos muitos pequenos buracos irregulares, que refletem a luz em direções aleatórias. Devido às frequentes reflexões, a luz é capturada espontaneamente na nanoestrutura e não pode escapar," explica Lodahl.
"Isto permite que a luz seja amplificada, resultando em condições surpreendentemente boas para a criação de lasers altamente eficientes e compactos", completou ele.
Bibliografia:
Random nanolasing in the Anderson localized regime
J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, P. Lodahl
Nature Nanotechnology
Vol.: Published online
DOI: 10.1038/nnano.2014.34
FONTES:Copenhague University/inovacaotecnologica
Assinar:
Postar comentários (Atom)
Nenhum comentário:
Postar um comentário